RHESSI Studies of Solar Flare Hard X-Ray Polarization

Mark L. McConnell¹, David M. Smith², A. Gordon Emslie⁴, Martin Fivian³, Gordon J. Hurford³, Robert P. Lin³, and James M. Ryan¹

¹Space Science Center, University of New Hampshire, Durham, NH
²Dept. Of Physics, U.C. Santa Cruz, Santa Cruz, CA
³Space Sciences Laboratory, U.C. Berkeley, Berkeley, CA
⁴Physics Department, University of Alabama, Huntsville, AL
Polarization in Solar Flares

The hard X-ray continuum is dominated by electron bremsstrahlung emission.

Measurements of hard X-ray polarization can shed light on the geometry of the acceleration process.

Model parameters include:
1) pitch angle distribution
2) B-field geometry
3) viewing angle
4) atm density profile

Models predict polarization levels as high as 20 or 30%.
RHESSI as a Polarimeter (20 – 100 keV)

A small (3 cm diam by 3.5 cm high) cylinder of Be serves as a Compton scattering element that scatters photons into the rear segments of the adjacent Ge detectors.

The Ge detectors measure the distribution of the scattered radiation.

Spacecraft rotation provides for fine sampling of scatter distribution.
Be Collimation

Thinned windows above the Be scattering block provide collimation with a FoV ~ 1°.

The fine collimation of the Be block results in significant attenuation even at small flare angles.

The attenuation is most apparent at lower energies.

These effects can be simulated.
The Polarization Signal - Simulation Results

We have used a modified version of GEANT3 to carry out Monte Carlo simulations of the polarimetric capabilities of RHESSI.

A valid polarimeter event is one which produces a measurable energy deposit in the rear segment of Ge detectors 1, 8, or 9.

Detector 2 is not currently operating as a segmented detector.
Nature of the RHESSI Data

X4.8 Flare - 23 July 2002
00:26 – 00:42 UT

Rear Segment Data
(20 – 40 keV)
dominated by spin modulation of atmospheric background and albedo
An Initial Approach to RHESSI Analysis

Three pairs of detectors with similar background:
- detectors 8/9
- detectors 3/5
- detectors 4/6

The data from detectors 3-6 can be used as background estimate for the polarimeter mode detectors 8/9.

Limitations:
- Does not use detector #1
- Assumes symmetric geometry
- No modeling of Earth albedo
- Need relative count rate corrections
Polarization Analysis

Two Component Analysis

\[ f(\eta) = A + B \sin 2(\eta - \varphi) + C \sin \alpha (\eta - \psi) \]

1. Systematic Component:
   - Single sinusoid component.
   - Dominates the response at high energies.
   - Appears to be due to vignetting of the source by spacecraft rotation (collimation effects).
   - This component averages to zero.

2. Polarization Signal
   - Double sinusoid component.
X4.8 Flare of 23-July-2002

Flare location: S13E72

Flare Aspect – 23 Jul 2002
00:26 – 00:42 UT

location vs. time within FoV

rear segment count rate
“Background” Subtracted Data vs. Energy
X4.8 Flare, 23 July 2002, 00:26 - 00:42 UT

- **20 - 40 keV**
- **60 - 80 keV**
- **40 - 60 keV**
- **80 - 100 keV**
"Background" Subtracted Data vs. Time

X4.8 Flare, 23 July 2002, 20 - 40 keV

Counts per 15° vs. Azimuthal Scatter Angle

- 20 - 40 keV
- 00:26 - 00:32 UT

- Counts per 15° vs. Azimuthal Scatter Angle
- 20 - 40 keV
- 00:32 - 00:37 UT

- Counts per 15° vs. Azimuthal Scatter Angle
- 20 - 40 keV
- 00:37 - 00:42 UT
20 - 40 keV Analysis

\[ Q_{\text{data}} = 0.15 \]

\[ Q_{100} = 0.57 \]

\[ \pi = \frac{Q_{\text{data}}}{Q_{100}} = 0.26 \]

Estimated Polarization \( \approx 26\% \)
X10.0 Flare of 29-Oct-2003

Flare location: S15W02

Flare Aspect - 29 Oct 2003
20:37 - 21:01 UT

Flare location vs. time within FoV

rear segment count rate

29-Oct-2003
20 - 100 keV
“Background” Subtracted Data
X10.0 Flare, 29 Oct 2003, 20:40 - 20:56 UT

- 20 - 40 keV
- 40 - 60 keV
- 60 - 80 keV
- 80 - 100 keV

Counts per 15° vs. Azimuthal Scatter Angle
X8.3 Flare of 02-Nov-2003

Flare location: S14W56

Flare Aspect - 02Nov 2003
17:10 - 17:40 UT

Flare location vs. time within FoV

rear segment count rate

02-Nov-2003
20 - 100 keV

counts / sec
“Background” Subtracted Data
X8.3 Flare, 02 Nov 2003, 17:10 - 17:40 UT

Counts per 15° vs. Azimuthal Scatter Angle
- 20 - 40 keV
- 40 - 60 keV
- 60 - 80 keV
- 80 - 100 keV
Be-Scattered Flux Spectra

Flare data compared with simulated data.

The data show a generally decreasing count rate versus energy.

The simulated spectrum is based on an incident $E^{-3.5}$ photon spectrum.

Comparison with simulations show some discrepancies.

all spectra normalized at 35 keV
Addition of a Be scattering block provides HESSI with significant polarimetric capability.

Polarization sensitivity predicted to be less than a few percent for some X-class flares.

Several X-class flares observed by RHESSI.

Initial results from flare of 23-July-2002 suggested a polarization level of ~26%.

Systematic effects have not yet been ruled out.

Inclusion of data from flares of 29-Oct-2003 and 02-Nov-2003 does not (yet) yield a consistent picture of these data.